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Abstract 30 

The latest operational National Air Quality Forecasting Capability (NAQFC) has been advanced 31 

to use the Community Multi-scale Air Quality (CMAQ) model version 5.3.1 with CB6 (carbon 32 

bond version 6)-Aero7 (version 7 of the aerosol module) chemical mechanism and is driven by 33 

the Finite Volume Cubed-Sphere (FV3)-Global Forecast System, version 16 (GFSv16).  This has 34 

been accomplished by development of the meteorological preprocessor, NOAA-EPA 35 

Atmosphere-Chemistry Coupler (NACC), which is adapted from the existing Meteorology-36 

Chemistry Interface Processor (MCIP). Differing from the typically used Weather Research and 37 

Forecasting (WRF)/CMAQ system in the air quality research community, the interpolation-based 38 

NACC can use various meteorological output to drive CMAQ (e.g., FV3-GFSv16) even though 39 
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they are in different grids. Here we compare and evaluate GFSv16-CMAQ vs. WRFv4.0.3-1 

CMAQ using observations over the contiguous United States (CONUS) in summer 2019. During 2 

this period, the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) 3 

field campaign was performed and we compare the two models with airborne measurements 4 

mainly from the NASA DC-8 aircraft. The GFS-CMAQ and WRF-CMAQ systems have overall 5 

similar performance with some differences for certain events, species and regions.  The GFSv16 6 

meteorology tends to have stronger planetary boundary layer height diurnal variability (higher 7 

during daytime, and lower at night) than WRF over the U.S. Pacific coast, and it also predicted 8 

lower nighttime 10-m winds. In summer 2019, GFS-CMAQ system showed better surface O3 9 

than WRF-CMAQ at night over the CONUS domain; however, their PM2.5 predictions showed 10 

mixed verification results: GFS-CMAQ yielded better mean bias but poorer correlations over the 11 

Pacific coast. These results indicate that using global GFSv16 meteorology with NACC to 12 

directly drive CMAQ via the interpolation is feasible and yields reasonable results compared to 13 

the commonly-used WRF downscaling approach.  14 

 15 

1. Introduction 16 

Traditionally, mesoscale meteorological models such as the Weather Research and Forecasting 17 

Model (WRF) (Powers et al., 2017) are used as the meteorological drivers for air quality models 18 

(AQMs) on the same (“native") model grid, such as Community Multiscale Air Quality Model 19 

(CMAQ) (Byun & Schere, 2006). The NOAA National Weather Service’s (NWS) National Air 20 

Quality Forecasting Capability (NAQFC) has historically used a different approach, in which the 21 

hourly meteorological outputs from prior operational models, such as North American Mesoscale 22 

Model (NAM), need to be interpolated to the AQM grid to drive its air quality prediction. Prior 23 

to this work, a “PREMAQ” coupler (Otte et al, 2004) combined both meteorological processing 24 

and Sparse Matrix Operator Kernel Emissions (SMOKE) (Houyoux et al., 2000) processes, such 25 

as point source plume rise effects. However, since the release of CMAQ version 5, the 26 

meteorology-dependent plume rise, sea salt, and dust emission processes are included as inline 27 

modules in CMAQ, and thus the corresponding emission processes are no longer needed in 28 

PREMAQ. Furthermore, PREMAQ has no built-in interpolator, and thus relied on external 29 

interpolators to remap the non-native-grid meteorological inputs, such as NAM, to the targeted 30 

CMAQ domain, though it did perform vertical layer collapsing/interpolation to reduce layers. 31 

The interpolation approach allows for more flexibility in using different meteorological drivers 32 

(i.e., besides just WRF) for CMAQ; however, there is potential to raise mass-consistency issues 33 

between models. It should be noted that the mass-consistency issues may also exist using native-34 

grid couplers (Byun, 1999a, 1999b), which can stem from the mass-inconsistent meteorological 35 

inputs or due to the temporal interpolation of the input data. The well-developed offline AQMs, 36 

such as CMAQ, have already considered such mass-consistency treatments using different 37 

meteorological inputs (Byun et al., 1999c).  38 

 39 

To upgrade the NAQFC system with the latest CMAQ chemistry and NOAA operational 40 

meteorology, we developed an updated interpolation-based meteorological coupler, the NOAA-41 

EPA Atmosphere-Chemistry Coupler (NACC) (Campbell et al., 2022) adapted from the U.S. 42 
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EPA’s Meteorology-Chemistry Interface Processor (MCIP) version 5 (Otte and Pleim, 2010; 1 

https://github.com/USEPA/CMAQ). The NACC system replaced PREMAQ, and effectively 2 

couples the Finite-Volume Cubed-Sphere (FV3) Dynamical Core - Global Forecast System 3 

version 16 (GFSv16) (Yang et al., 2020; Harris et al, 2021) to CMAQ v5.3.1 (hereafter referred 4 

to as GFS-CMAQ). Campbell et al. (2022) described the development and application of the 5 

GFS-CMAQ system using NACC (in their work referred to as “NACC-CMAQ”) and a 6 

comprehensive comparison between the current (GFS-CMAQ since July 20, 2021) and previous 7 

(NAM-CMAQv5.0.2) operational NAQFC model performances.  8 

 9 

In this study, we analyze the impacts of the meteorological model drivers, and compare GFS-10 

CMAQ using NACC interpolation to the commonly-used downscaled, native-grid WRF-CMAQ 11 

application and its impact on air quality predictions. Yu et al. (2012a, 2012b) had previously 12 

compared the CMAQ performance driven by WRF-NMM and WRF-ARW during the 2006 13 

TexAQS/GoMACCS field campaign, and found that the NMM-CMAQ and ARW-CMAQ 14 

showed overall similar performance with some differences for certain events, chemical species, 15 

and regions. Similarly, this study focuses on the comparison of GFS-CMAQ versus WRF-16 

CMAQ (see Section 2, Methodology), and verifies the model performance against the aircraft 17 

observations from the Fire Influence on Regional to Global Environments and Air Quality 18 

(FIREX-AQ) field experiment during summer 2019 (Section 3). Surface verification is also 19 

performed using AIRNow data for August 2019 (Section 4), serving as a benchmark for the new 20 

NAQFC versus the traditional WRF-CMAQ used in the air quality modeling community.  21 

 22 

2. Methodology  23 

Here we compare the two CMAQ (version 5.3.1) runs driven by the interpolated GFSv16 24 

meteorology (GFS-CMAQ) and WRF downscaled meteorology (WRF-CMAQ). All other 25 

settings, such as emission and lateral boundary conditions are the same.  The meteorology-26 

related physics is discussed in the following sections to address the models’ performance 27 

discrepancies. Both the GFS-CMAQ and WRF-CMAQ simulations are run from a period 28 

covering 12 July – 31 August, 2019, each using the last 10 days in July as the model spin-ups 29 

that are not included in the analyses.   30 

 31 

2.1 GFS Meteorological Inputs  32 

The GFSv16 is the current operational global forecast system in NOAA/NCEP using FV3 33 

dynamical core.  Its detailed configuration can be found in Campbell et al. (2022) and Yang et al. 34 

(2020). Compared to the previous version (v15), GFSv16 updated many physical schemes (Table 35 

1) and added the parameterization for subgrid scale nonstationary gravity-wave drag. To use the 36 

GFS’s meteorology to drive CMAQ, a meteorological coupler, NACC, is developed (Campbell 37 

et al., 2022). Differing from the original MCIP which was developed to process WRF/ARW 38 

meteorology for CMAQ, the NACC coupler interpolates non-native-grid meteorology to a user-39 

https://doi.org/10.5194/egusphere-2022-356
Preprint. Discussion started: 9 June 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

defined grid and has parallel processing capability, which drastically reduces its run time for 1 

operational forecasts (Campbell et al., 2022). Currently, NACC’s horizontal interpolation 2 

employs two methods: bilinear and nearest-neighbor. In this study, we use the nearest-neighbor 3 

method to categorical (discontinuous) variables that include land use types, vegetation fraction, 4 

terrain elevation, Monin–Obukhov length, friction velocity, and soil temperatures, while the 5 

bilinear interpolation is used for mainly smoothly varying (continuous) meteorological variables 6 

that include wind fields, temperature, pressure, and specific humidity. The CMAQ model is 7 

defined in the Arakawa C-grid (Arakawa and Lamb, 1977), and thus the GFSv16 horizontal wind 8 

components (U, V) need to be interpolated to the perpendicular cell faces instead of the cell 9 

center (Otte and Pleim, 2010) after rotation to the defined map projection. The scalar variables 10 

are defined in the target grid cell center, and thus their GFSv16 interpolations are more 11 

straightforward. The NACC coupler can either use the native layers or collapse (i.e., interpolate) 12 

to a set number of user-defined vertical layers for CMAQ use. The GFSv16 has 127 vertical 13 

layers with global coverage in 13 km horizontal resolution, where the targeted domain is a 12×12 14 

km Contiguous United States (CONUS) with 35 vertical layers (Campbell et al, 2022). Here we 15 

use 24-hour GFSv16 forecasts starting at 12 UTC each day. 16 

 17 

Most variables needed by CMAQ are directly interpolated from the GFSv16 outputs. The NACC 18 

processor has options to calculate diagnostic variables, such as planetary boundary layer (PBL) 19 

height, if they are needed. In this study, we use the interpolated GFSv16’s PBL height instead of 20 

the diagnostic one. It also has an option to import the externally provided land-surface variables. 21 

Here we import updated 2018–2020 climatological averaged leaf area index (LAI) and NOAA 22 

near-real-time (NRT) greenness vegetation fraction (GVF) from satellite-based Visible Infrared 23 

Imaging Radiometer Suite (VIIRS) retrievals (Campbell et al., 2022). The updated satellite-based 24 

LAI and GVF impact CMAQ’s biogenic emissions and dry deposition processes, which were 25 

described in detail in Campbell et al. (2022).  26 

 27 

2.2 WRF Meteorology  28 

To compare with GFSv16 meteorology processed by NACC, a corresponding WRF version 4.0.3 29 

(Skamarock et al, 2021) simulation is run covering the NAQFC’s native grid, which is a 12 km 30 

horizontal resolution, Lambert conformal map projection over CONUS.  Table 1 shows the WRF 31 

configuration, which is commonly employed in CONUS meteorological and air quality studies in 32 

the community, versus the current NOAA/NWS operational version of GFSv16. In contrast to 33 

GFSv16, which is a global model that uses the NOAA/NCEP’s Global Data Assimilation System 34 

(GDAS) (https://www.emc.ncep.noaa.gov/data_assimilation/data.html) for its initial conditions 35 

and runs on its own global dynamics and physics without any other constraints, the regional 36 

WRF simulation uses downscaled GFSv16 for its initial conditions. Furthermore, WRF also uses 37 

downscaled lateral boundary conditions taken from GFSv16 every 6 hours. Here WRF runs 38 

continuously after spin-up and we have enabled the four-dimensional data assimilation (FDDA) 39 
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for the u- and v-component winds, temperature, and humidity (Table 1) every 6 hours, thus 1 

nudging towards GFSv16.  2 

 3 

WRF and GFSv16 have similar settings for the land surface model, surface layer and radiation 4 

schemes; however, their microphysics and PBL schemes are different (Table 1). Compared to the 5 

35-layer WRF with a 100 hPa domain top, GFSv16 has a much higher domain top (0.2 hPa) and 6 

127 vertical layers, which are collapsed by NACC to 35 sigma layers up to 14 km for CMAQ. 7 

We use NACC (inherited from MCIP version 5.0) to process WRF hourly meteorology, while 8 

maintaining the vertical layer structure. Thus, in contrast to GFS-CMAQ, the WRF-CMAQ 9 

system uses the native grid without interpolation. 10 

 11 

2.3 CMAQ Configuration 12 

Here CMAQ version 5.3.1 (Appel et al., 2021) is used with the Carbon Bond 6 version r3 13 

(CB6r3; Yarwood et al., 2010, 2014; Luecken, et al., 2019) chemical mechanism and Aero7 14 

treatment of secondary organic aerosols (CB6r3_AE7_AQ).  CMAQ 5.3.1 includes a series of 15 

scientific updates from the previous version (Appel et al., 2021), including the updated air-16 

surface exchange and deposition modules, which showed significant impact on ozone prediction 17 

compared to the previous NAQFC (Campbell et al., 2022). We also include the bi-directional 18 

NH3 (BIDI-NH3) exchange model for NH3 surface fluxes. An updated Biogenic Emissions 19 

Landuse Dataset v5 (BELD5) is used in this study to drive the inline Biogenic Emissions 20 

Inventory System (BEIS) version 3.61. The anthropogenic emissions are provided by the 21 

National Emissions Inventory Collaborative (NEIC) with base year 2016 version 1 (NEIC 2019). 22 

We replace the U.S. EPA default CMAQ dust emissions model with a novel inline windblown 23 

dust model known as “FENGSHA” (Fu et al., 2014; Huang et al., 2015; Dong et al., 2016). 24 

Campbell et al. (2022) include the details of the CMAQ 5.3.1 configuration for this study. 25 

 26 

We have updated the wildfire emissions system in CMAQv5.3.1 based on the Blended Global 27 

Biomass Burning Emissions Product (GBBEPx) (Zhang and Kondragunta, 2006; Zhang et al., 28 

2011).  The GBBEPx uses satellite-detected fire radiative power (FRP) to estimate wildfire 29 

smoke emissions for a number of species: CO (carbon monoxide), NOx (nitrogen oxides), SO2 30 

(sulfur dioxide), elemental carbon, total organic aerosols, and PM2.5. The satellite FRP is 31 

estimated from satellite brightness temperature anomaly, and the GBBEPx processor assumes 32 

that the wildfire emissions are proportional to the FRP over certain land use type in certain 33 

regions. The GBBEPx emissions are based on polar orbiting satellites: MODIS (Aqua and Terra 34 

satellites) and VIIRS (Suomi-NPP and NOAA-20 satellites) instruments, which are updated once 35 

per day. A wildfire emission preprocessor converts the GBBEPx emissions to CMAQ-ready 36 

input files using emission speciation and diurnal profiles (high during daytime and low at night) 37 

(adopted from U.S. EPA-based profiles) (Baker et al., 2016), and a daily scaling factor. Here we 38 

classify the wildfire into either a long-lasting fire (longer than 24 hours) or short-term fire 39 

(shorter than 24 hours) based on land use types and regions.  Only the fires west of 110°W that 40 
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have a model grid cell total forest fraction > 0.4 are assumed to be long-lasting fires, which incur 1 

daily scaling factors of 1, 0.25, 0.25 for days 1, 2 and 3, respectively. All other short-term 2 

GBBEPx fires are assumed to have smoke emissions for 24 hours (i.e., day 1 only).  CMAQ 3 

treats wildfire emissions as point sources that undergo inline plume rise to distribute the smoke 4 

vertically. The default CMAQ plume rise used here is based on Briggs (1965), which is driven 5 

by fire heat flux (converted from FRP with a ratio of 1) and fixed burning area (assumed to be 6 

10% of the 0.1°×0.1° grid cell). 7 

 8 

3. Model Evaluations over the U.S. for August 2019 9 

To first gain a general picture and compare the overall GFS-CMAQ and WRF-CMAQ model 10 

performances, in this section we evaluate near-surface meteorological and air quality predictions 11 

during the FIREX-AQ August 2019 period against NOAA’s METeorological Aerodrome Report 12 

(METAR; https://madis.ncep.noaa.gov/madis_metar.shtml) and the U.S. EPA’s AirNow 13 

(https://www.airnow.gov/) observation networks.   14 

 15 

3.1 Domain-Wide Meteorology against the METAR Network 16 

Figure 1 shows the mean bias (MB) of GFS and WRF predicted surface meteorological variables 17 

compared to METAR data during August, 2019. Both meteorological models have a cool bias 18 

over the Western and Northeastern United States, and a warm bias over the western Rocky 19 

Mountain region and Southeastern United States (Figure 1a, 1b). Similar temperature predictions 20 

are expected since WRF uses the FDDA method nudging toward GFS data. However, GFS tends 21 

to be cooler than WRF over the Rocky Mountains and in the central and northeastern USA due 22 

to their different dynamics and physics.   The GFSv16 cold bias in the lower troposphere is 23 

impacted by excessive evaporative cooling from rainfall (personal communication with 24 

NOAA/NCEP). Campbell et al. (2022) had detailed discussions about GFSv16 biases. 25 

 26 

Both GFSv16 and WRF models have similar and rather significant dry biases for specific 27 

humidity (SH) predictions across CONUS (Figure 1c, 1d). Qian et al (2020) investigated this 28 

common dry bias in many models, and found that neglecting an irrigation contribution could 29 

cause this dry bias. GFS has widespread dry biases (Campbell et al. 2022) and WRF has similar 30 

dry biases, too as it is nudged toward GFS. There are some noticeable differences for certain 31 

regions. For instance, WRF has less dry bias over Southern Texas than GFS. 32 

 33 

Both models underestimate the mean 10-m wind speeds compared to METAR stations over the 34 

western U.S. WRF has stronger underpredictions over the Rocky Mountains and overpredictions 35 

over northeastern U.S., while GFS has stronger underpredictions over the Appalachian 36 

Mountains and overpredictions over Texas and Oklahoma. GFSv16’s operational verification 37 

also (https://www.emc.ncep.noaa.gov/gmb/emc.glopara/vsdb/v16rt2/g2o/g2o_00Z/index.html) 38 

shows that it tends to underpredict the 10-m wind over the western U.S. during both daytime and 39 
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nighttime, but shows overprediction over the eastern U.S. Besides the difference of physical 1 

schemes, etc. (Table 1), other possible reasons causing this surface wind difference could be 2 

effect of the gravity-wave drag (GFSv16 includes it, but the WRF run here does not), and 3 

vertical resolution (GFS’s 127 layers versus WRF’s 35 layers). Some studies (Skamarock et al, 4 

2019) revealed the necessity of fine vertical resolution for atmospheric simulations, especially 5 

within the PBL, near tropospheric top, and during convective events. Insufficient vertical 6 

resolution could also cause plume dilution on chemical transport modeling (Zhuang et al., 2018). 7 

The gravity-wave drag is also known to produce synoptic scale body forces on the atmospheric 8 

flow over irregularities at the earth’s surface such as mountains and valleys, and uneven 9 

distribution of diabatic heat sources associated with convective systems (Kim et al., 2003). Its 10 

parameterization is needed for large-scale models.  11 

 12 

There is strong regional variability in the monthly mean PBL height differences between GFS 13 

and WRF during daytime (represented by 18 UTC) and nighttime (represented by 06 UTC) 14 

(Figure 2). During daytime, GFS has a higher PBL height compared to WRF over the U.S. 15 

Pacific coast, northern Rocky Mountains, northeastern and southeastern U.S., but it becomes 16 

lower over the central U.S. (e.g., Texas, Oklahoma, and Kansas). At night, however, most of 17 

these regional differences between GFS and WRF are reversed.  This diurnal difference is 18 

mainly driven by the different PBL schemes employed in GFS (Han and Bretherton, 2019) and 19 

WRF (i.e., YSU) and the associated other physical suites, including the land surface data. The 20 

GFS’s PBL height has a strong diurnal variation over these regions, including the western and 21 

northeastern U.S. in the summer, including a sharp rise and collapse after sunrise and sunset, 22 

respectively (Campbell et al., 2022). The strong PBL diurnal variation has significant effects on 23 

the air quality predictions in GFS-CMAQ.  24 

  25 

3.2 Evaluation of Regional Meteorology and Air Quality against the AirNow Network 26 

The U.S EPA AirNow network provides hourly observations of near-surface ozone, fine 27 

particulate matter (PM2.5), and meteorology. Campbell et al. (2022) showed detailed verification 28 

of GFS-CMAQ with the surface AIRNow data. Here we focus on the difference between the 29 

interpolation-based GFSv16 versus WRF downscaling and the impacts on meteorological and 30 

chemical model performances. Figure 3 shows a comparison of these two models over two 31 

specific regions, the U.S. West (CA, OR and WA) and Northeast states (CT, DE, MA, MD, ME, 32 

NH, NJ, NY, PA, RI, VT and District of Columbia) (Figure S1), where the two models had 33 

relatively large differences for some meteorological variables. GFS and WRF had very similar 2-34 

m temperatures over the Pacific coast states: Washington, Oregon and California, and both of 35 

them had similar cool bias (around 1K), R and RMSE (Figure 3a).  However, these two models 36 

had significant differences for10-m wind speed prediction over the Pacific coast (Figure 3c), 37 

where WRF overpredicted the wind speed, especially at night and in later August. Most AIRNow 38 

stations are located near urban or suburban areas, which generally have weaker 10-m wind speed 39 

than those at the METAR aviation weather stations near airports. For this reason, although 40 
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Figure 1e and 1f shows that GFS and WRF underpredict monthly-mean wind speed over the 1 

METAR stations in the West, they still tend to overpredict AIRNow wind (Figure 3c), especially 2 

for the WRF 10-m wind speed at night. Considering that the model grid cells represent 12×12 3 

km2 averages, the true model-observation comparisons likely fall somewhere between the 4 

urban/suburban AIRNow stations and METAR stations, depending on the land use fractions of 5 

each grid. Obviously the observation representation characteristics could affect the verification 6 

results. Compared to AIRNow stations, GFSv16 has overall better scores for surface wind speed 7 

predictions over the U.S. West, where the WRF’s larger surface wind speed overprediction is 8 

associated with its PBL height predictions (Figure 3e, 3f). During the nighttime, GFS has a lower 9 

PBL height (10–50% lower than WRF) and weaker vertical mixing, which brings less 10 

momentum from the upper layers to the surface, which led to lower nighttime wind and better 11 

agreements with the AIRNow wind-speed observation.  12 

 13 

Over the northeast, the mean bias (MB) of GFS temperature was about -1K, while the WRF has 14 

a smaller, slightly positive MB of about 0.22K (Figure 3b). However, the GFS’s temperature 15 

prediction has a better correlation coefficient, R, and RMSE, implying that it better captures 16 

some events, such as the 28–29 of August. Both models overpredict 10-m wind speeds in the 17 

northeast, but the GFS model yields better results due to a slightly lower PBLH at night (Figure 18 

3f) than WRF that had significant ovepredictions, especially during 25–29, August (Figure 3d) 19 

when the tropical storm Erin approached this region. Especially on 28 of August, when the storm 20 

was centered near the east coast of North Carolina, the WRF run significantly underpredicts 2-m 21 

temperature (Figure 3b) and overpredict 10-m wind speed (Figure 3d), implying that the some 22 

WRF settings lead to relatively large surface prediction bias for the storm weather, such as its 23 

relatively coarse vertical resolution compared to the 127-layer GFS model.  24 

 25 

Figures 4a and 4b show the ozone predictions of the two models over these two regions, and 26 

GFS-CMAQ yields predominantly lower O3 than WRF-CMAQ, especially at night. Over the 27 

northwest, the lower ozone in GFS-CMAQ is associated with their PBL height difference. First, 28 

with a certain dry deposition velocity between the models, it is easier to deplete ozone given the 29 

smaller volume of a shallower PBL. Second, the thinner PBL results in higher NOx 30 

concentrations and ozone titration rates near NOx source regions, and consequently lower ozone 31 

there at night. Last, the lower PBL leads to weaker vertical mixing and downward transport of 32 

ozone from the residual-layer at night (Caputi et al, 2019). All these factors contributed to the 33 

lower nighttime ozone of GFS-CMAQ compared to WRF-CMAQ. Since GFS-CMAQ already 34 

underpredicts ozone due to combined meteorological factors, such as the temperature 35 

underprediction (Figure 4a), the GFS-CMAQ’s further ozone reduction (possibly due to its lower 36 

PBLH at night) exacerbates its low bias. However, over the Northeast, the similar impacts help 37 

the GFS-CMAQ yield much better MB due to its better agreement with the observed nighttime 38 

low ozone over the Northeast. Over the entire CONUS domain, the situation is similar: for an 39 

average August 2019, the GFS-CMAQ has a lower ozone MB (1.1 ppb) compared to WRF-40 
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CMAQ (4.7 ppb). Figure 5 shows that both models have similar daytime ozone prediction over 1 

CONUS. However, GFS-CMAQ better captures low nighttime ozone over the U.S. East than 2 

WRF-CMAQ (Figure 5c, 5d). 3 

 4 

GFS-CMAQ has substantially higher PM2.5 mean concentrations over the U.S. West, but lower 5 

over the U.S. Northeast compared to WRF-CMAQ (Figures 4c, 4d). These model differences are 6 

also related to their interpolated GFSv16 versus downscaled WRF meteorological drivers.  7 

Because both models use the same emissions under relatively clean background conditions in the 8 

west (i.e., prevailing westerly flow from the Pacific Ocean), the PBL and wind speed differences 9 

have significant impacts on their near-surface pollutant concentrations, especially at night. Both 10 

models show strong PM2.5 diurnal variation (high at night and low during daytime), driven by 11 

the meteorological diurnal variation (e.g. PBL), which overcomes the emission diurnal variation 12 

(usually high during daytime and low at night). Compared to WRF-CMAQ, GFS-CMAQ has 13 

lower nighttime PBL height and weaker wind speed at night, which leads to weaker vertical 14 

mixing and venting, and increases the pollutant concentrations near the surface and yields higher 15 

surface PM2.5 over the U.S. West (Figure 4c). Its higher surface PM2.5 could also result in 16 

stronger local dry deposition. In contrast to local vertical mixing and venting effects on PM2.5 17 

discussed above, there are strong (and potentially counterbalancing) impacts of model PBL and 18 

horizontal wind speed differences on downstream PM2.5 concentrations at night. WRF-CMAQ’s 19 

deeper PBL and stronger wind speeds at night (Figures 3c–3f) tends to transport aerosols and 20 

their precursors more efficiently downstream via the dominant advection pathway. Figure 6 21 

shows that these monthly mean background PM2.5 differences appear in East of Rocky 22 

Mountain (WRF-CMAQ is about 2 μg/m3 higher) during both daytime and nighttime. This effect 23 

is very prominent in the Northeast region. Although both models predicted similar PM2.5 24 

magnitude over the U.S. Northeast, GFS-CMAQ yields the overall PM2.5 underprediction, and 25 

its monthly-mean PM2.5 is 2.6 μg/m3 lower than the WRF-CMAQ prediction (Figure 4d). 26 

Especially during 01–09 August, WRF-CMAQ had about 4 μg/m3 higher surface PM2.5 27 

background than that of GFS-CMAQ. In this case, the WRF-CMAQ model has a better 28 

agreement with observations (Figure 4d). It is possible that the GFS-CMAQ’s nighttime PBL 29 

heights (wind speeds) are too shallow (weak) in this case, which does not allow enough transport 30 

of pollutants to the downstream (Eastern USA). Overall, GFS-CMAQ and WRF-CMAQ have 31 

mixed performances for PM2.5 predictions during the August 2019 period: GFS-CMAQ has 32 

better PM2.5 prediction over the U.S West, and WRF-CMAQ yields better results over east of 33 

Rocky mountain (Figure 6). 34 

4 Model Comparisons against the FIREX-AQ Aircraft Data 35 

From late July to early September, 2019, the joint NOAA-NASA FIREX-AQ field campaign 36 

(https://csl.noaa.gov/projects/firex-aq/) employed a suite of satellites, aircraft, vehicles and 37 

ground site platforms aimed to observe, analyze, and characterize air pollutants emitted from 38 

wildfire sources over the CONUS (Ye et al., 2021).  The FIREX-AQ airborne measurements 39 

https://doi.org/10.5194/egusphere-2022-356
Preprint. Discussion started: 9 June 2022
c© Author(s) 2022. CC BY 4.0 License.



10 

 

provide a three-dimensional dataset from various meteorological, gas, and aerosol instruments 1 

that is used to verify the GFS-CMAQ and WRF-CMAQ model performance, while elucidating 2 

reasons for any model differences.  Here the focus of the FIREX-AQ model comparison and 3 

verification is against observations taken primarily from the NASA DC-8 aircraft, which include 4 

meteorological variables, gaseous and aerosol concentrations, and aerosol optical properties. The 5 

majority of the FIREX-AQ flights were over the western United States, and sampled within 6 

environments that both were and were not (see section 4.1) influenced by wildfire emissions 7 

(https://daac.ornl.gov/MASTER/guides/MASTER_FIREX_AQ_JulySept_2019.html). During a 8 

cluster of major wildfire events (see Section 4.2), the DC-8 sampled both near-source and aged 9 

smoke plumes between 02–08 August, 2019 (i.e., the Williams Flats, Snow Creek, and Horsefly 10 

Fires) across the states of Idaho, Washington, and Montana.   11 

 12 

4.1 Comparison of the July 22 non-wildfire event over the central California Valley  13 

On 22 July, the DC-8 aircraft flew from California to Boise, Idaho, while maintaining a 14 

relatively low-altitude (<1 km) above sea level (ASL) over the California Central Valley (Figure 15 

7). This flight was not impacted by any major wildfire event, and was mainly controlled by 16 

anthropogenic emissions and local meteorological conditions. Figure 7 shows that the GFSv16 17 

and WRF models had similar meteorological temperature and humidity predictions, and that both 18 

models have dry and warm biases over the Central Valley at lower altitudes (Figures 7d–7e) 19 

(Yun et al., 2020).  GFS’s horizontal wind speeds tended to have stronger variability than WRF 20 

(Figure 7b), especially in high altitudes. For wind direction, WRF showed a better prediction 21 

than GFS around 20 and 24 UTC (Figure 7c).  22 

 23 

Both GFS-CMAQ and WRF-CMAQ underestimate the vertical wind (W) variability by at least 24 

one order of magnitude, and WRF-CMAQ has weaker W variability than that of GFS-CMAQ, 25 

especially in high altitudes (Figure 7f). The model vertical velocities are not from the GFS or 26 

WRF model, but rather they are re-diagnosed in CMAQ to conserve mass  (Otte and Pleim, 27 

2010), and thus represent the whole layer’s vertical movement across the 12 km by 12 km grid 28 

cell. With its flight speed around 80 to 240 m/s, the DC-8 aircraft’s one-minute average  29 

sampling frequency results in an approximate 4.8 to 14 km horizontal scale, respectively, which 30 

is comparable to the 12 km CMAQ model resolution. The aircraft observations, however, include 31 

turbulence effects during its one-minute averages, which may not be temporally resolved by 32 

CMAQ at this resolution. Thus, both the GFS-CMAQ and WRF-CMAQ model vertical 33 

velocities are much lower and have almost no correlation with the aircraft observations.  34 

 35 

Although both GFS-CMAQ and WRF-CMAQ have reasonable comparisons for most 36 

meteorological variables, including the horizontal winds, it continues to be a challenge to 37 

compare them with the observed vertical velocities. Thus to further elucidate the model vs. 38 

observation differences in vertical motions, Figure 8 shows a  curtain plot of vertical velocities 39 

along the flight path from the two models. Since WRF-CMAQ remains in a native grid, its wind 40 
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fields tend to be more balanced and have lower variability compared to the interpolated GFS-1 

CMAQ wind fields. The stronger variability in W for GFS-CMAQ represents CMAQ’s effort to 2 

counteract mass inconsistency effects from the interpolated horizontal wind fields (Byun, 3 

1999b). 4 

 5 

GFS-CMAQ and WRF-CMAQ overall yield similar results for specific chemical species during 6 

this DC-8 flight (Figure 9). Both models underestimate CO, O3 and ethane (C2H6) concentrations 7 

over the lower altitudes in the California Central Valley. Over the same flight segment, they had 8 

better NOx (NO + NO2) and ethene (C2H4) predictions, implying that the emissions of these two 9 

species have better accuracy than those of CO and ethane. Figure 9f shows that the two models 10 

also underestimate NOz (NOy–NOx), or the oxidized nitrogen species besides NOx, indicating 11 

that the photochemical ozone production may also be underestimated. NOz is a good indicator of 12 

the ozone photochemical formation (Sillman et al., 1997), where the O3/NOz ratio represents the 13 

ozone photochemical efficiency per NOx oxidation products. Thus, NOz and O3 are typically 14 

highly correlated over regions with active photochemical production. The O3 and NOz 15 

underestimations are likely due to the underestimation of CO and some hydrocarbons, such as 16 

ethane, as they are precursors of O3.  17 

 18 

The two models show slight differences in peak values of CO, ethene, and NOx around 23:30 19 

UTC, where the GFS-CMAQ predicted concentrations are slightly higher and closer to 20 

observations (Figure 9). These differences are due to their PBL predictions (both from the 21 

corresponding meteorological model outputs), where GFS-CMAQ has a lower PBL height and 22 

weaker emission vertical dilution compared to WRF-CMAQ (Figure 8). GFS-CMAQ tends to 23 

underpredict O3 more (Figure 9b), however, due to its higher NOx titration.  This implies that the 24 

effects of the transport and non-local transformation of O3 could be stronger than that of local 25 

precursor emissions. WRF-CMAQ has higher NOz (Figure 9f), but lower NOx compared to 26 

GFS-CMAQ due to the time lag of O3 and NOz photochemical formation. Consequently, the 27 

peak O3 values may not be well correlated with the emitted precursors, such as NOx and volatile 28 

organic compounds (VOCs). Furthermore, the modeled peak C2H6 and C2H4 concentrations do 29 

not occur at the same time around 23:30 UTC, while observations indicate that these two species 30 

should be highly correlated in this region. This model mismatch implies that the VOC speciation 31 

factors for a certain area or emission sector need to be improved over Southern California.  32 

 33 

4.2 Comparison of the 6 August wildfire events over the U.S. Northwest  34 

On 06 August, the DC-8 observed a cluster of three wildfires: the Williams Flats Fire (47.98 °N, 35 

118.624 °W, 80 km to the northwest of Spokane, Washington), Snow Creek Fire (47.703°N, 36 

113.4°W, 32 km northeast of Condon, Montana), and Horsefly Fire (46.963 °N, 112.441°W, 24 37 

km east of Lincoln, Montana). Figure 10a shows the flight path on that date, where the DC-8 38 

aircraft departed from Boise, ID,  flew over the Williams Flats Fire region, then flew to Montana 39 

to sample the Snow Creek and Horsefly Fires (i.e., Montana Fires), and finally returned to the 40 
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Boise base. The aircraft flew below 8 km for most flight segments near the fire plumes. Figure 1 

S1 shows the corresponding GOES-16 satellite true color image, where these 06 August fires and 2 

associated smoke plumes are visible and can be distinguished from the cloud bands to the south 3 

that move northward later that day (Figure S2).  The Williams Flats Fire was ignited by 4 

lightning, and was the largest fire event sampled during the FIREX-AQ campaign burning from 5 

about 02–08, August, 2019. 6 

 7 

Both models significantly underpredicted CO (Figure 10c), submicron organic aerosol (Figure 8 

10e) and aerosol optical extinction coefficient (AOE) (Figure 10f), which suggests an issue with 9 

the GBBEPx gas and aerosol emissions. The models performed well for NO2 during the 10 

Williams Flats and Montana Fires Fire below 6 km ASL, but there were prominent 11 

underestimations for the high-altitude flight segments (Figure 10d). This indicates that the 12 

background NO2 was underestimated, or the models had insufficient inject height for fire plume 13 

rise (both based on Briggs, 1965). WRF-CMAQ predicted higher O3 values than the GFS-14 

CMAQ, which overall agreed better with observations for the Williams Flats Fire (Figure 10b). 15 

However, for the Montana Fires (~ 23–24 UTC), WRF-CMAQ has higher O3 biases and GFS-16 

CMAQ yields better results. The difference in O3 is largely driven by the background 17 

concentration difference between the two models, where WRF-CMAQ tends to have higher 18 

domain-wide O3 than GFS-CMAQ due to the meteorological effects discussed in Sections 3.  19 

 20 

Figure S3 shows the spatial overlay comparison of vertically averaged GFS-CMAQ predictions 21 

at 21 UTC and the DC-8 flight observations for the altitude 1–3 km above ground level (AGL), 22 

on 6 August, 2019. The peak NO2 observation around 118.5°W, 48°N indicates the general 23 

location of the Williams Flats fire. The GBBEPx emission and GFS-CMAQ prediction showed 24 

shifted peak-value locations driven by the westerly modeled winds. For this flight, the GBBEPx 25 

had stronger NOx fire emission over two Montana locations than that over Williams Flats. The 26 

model overpredicts the column averaged NO2 concentrations, especially over the Montana fires, 27 

which can not be reflected by the point-by-point NO2 comparison result in Figure 10d. For this 28 

flight, the mean GFS-CMAQ NO2 along the flight path for 1–3km AGL is about 0.125 ppbv 29 

compared to the observed mean NO2 of 0.169 ppbv, and the model indeed showed NO2 30 

underprediction along the flight path. However, in this case, the flight path missed some 31 

locations where modeled peak NO2 values existed or the modeled transport misplaced the 32 

plumes, especially over the Montana fires leading to this inconsistency. For ozone comparison 33 

(Figure S3b), this inconsistency could also exist, though not as significant as for the high-34 

gradient NO2 concentrations. In the GFS-CMAQ prediction, the high ozone concentrations are 35 

almost co-located with high NO2 concentration (Figure S3b), but the observation did not show 36 

this feature. Instead, some high-O3 flight segments had relatively low NO2, such as those circled 37 

in the black rectangle box of Figure S3b. The observed NOx titration was not able to be 38 

produced by the 12 km models. Wang et al (2021) used a 100m horizontal resolution large eddy 39 

simulation and demonstrated the capability of using such techniques to capture some high-40 
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resolution fire plume features and associated chemical behavior. While such high resolution 1 

techniques are not currently feasible for the operational NAQFC, they demonstrate the limitation 2 

of using regional scale (12×12 km) models to capture such fine scale features of plume behavior.  3 

 4 

GFS-CMAQ has higher wildfire-related CO, NO2, OA and AOE values that are closer to 5 

observations than WRF-CMAQ for the Montana Fires between 23–24 UTC at flight altitudes of 6 

~ 4–5 km (Figure 10c–10f). Since these two models use the same GBBEPx emissions and 7 

wildfire plume rise algorithm (Briggs, 1965), the differences should be due to other reasons. To 8 

help explain these model differences, Figure 11a and 11b show the Differential Absorption High 9 

Spectral Resolution Lidar (DIAL-HSRL) retrieved aerosol backscatter coefficients (ABC) 10 

aboard the DC-8 aircraft without and with cloud screen, respectively. It shows that the major fire 11 

plumes of the William Flats Fire were below 4 km (~ 19–22 UTC) , but the Montana Fires (~23–12 

24 UTC) extended from the surface up to 6 km, with some detached plumes reaching 10 km. The 13 

model predicted AOEs have an overall similar pattern, with major plumes below 4 km for the 14 

Williams Flats Fire (Figures 11c and 11d). Over the Montana Fires, the GFS-CMAQ predicts 15 

slightly higher PBL, thus allowing for the fire plume to reach a higher height near the DC-8 16 

cruising altitude.  In contrast, the WRF-CMAQ wildfire plumes are slightly lower than the 17 

aircraft flight path around 23–24 UTC, which leads to underprediction in the fire emitted species 18 

(Figure 11d).  19 

 20 

An interesting feature in the DIAL observations is the detached plume from 8 km to 10 km 21 

altitude (Figure 11a), where some cirrus clouds existed, and the DIAL retrieval could not 22 

distinguish whether they are pure clouds or clouds mixed with elevated aerosols above 8km. The 23 

cloud screen product (Figure 11b) mainly showed the enhanced aerosols below 7km and some 24 

scattered signals near the high cloud edges. Cloud mixing with aerosols was usual for fire 25 

induced clouds, or pyrocumulonimbus (Peterson et al., 2021). Although in this event, the middle-26 

size fires did not show evident of inducing the high-altitude clouds, the indicator of mixed clouds 27 

and aerosols in high altitudes still existed: both in-situ measured OA (Figures 10e) and AOE 28 

(Figure 10f, 11c, 11d) showed the enhanced aerosols around 25 UTC above 8km. This elevated 29 

plume was generally captured by the GFS-CMAQ simulation, while underestimating its strength 30 

(Figure 11c); however, this feature was completely missed in WRF-CMAQ (Figure 11d). 31 

Considering the altitude range of the detached plume, the major model disparities are likely due 32 

to model convection differences in the free troposphere. To further investigate this impact, 33 

Figures 11e and 11f show curtain plots of RH predicted by the two models. GFS-CMAQ yields 34 

higher RH at such altitudes (10 km) compared to WRF-CMAQ around 23–24 UTC, indicating 35 

that the GFS-CMAQ has stronger convection. The CMAQ model uses inputted meteorology to 36 

diagnose convection activity and drive its ACM2 convection scheme. This convective activity is 37 

apparent in GOES-16 satellite images (Figure S2), as more fractional clouds appeared ahead of 38 

the northward moving frontal band. Both the GFSv16 and WRF models used here do not 39 

consider the fire heat feedback effect, and thus their predicted convection and clouds are only 40 
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driven by the synoptic weather conditions. If such synoptic-to-mesoscale weather models 1 

consider wildfire heat feedback effects, their predictions may result in stronger convection and 2 

help correct underpredictions in PBL heights.  3 

 4 

4.3 Statistical Results of Model Performances for FIREX-AQ  5 

4.3.1 Meteorological Statistics  6 

 7 

During the FIREX-AQ field campaign, the DC-8 aircraft performed more than 20 flights over 8 

CONUS with detailed observations of various chemical compounds. Tables 2 and 3 show the 9 

statistical results of mean bias (MB), normalized mean bias (NMB), root mean square error 10 

(RMSE), correlation coefficient (R), and linear regression/slopes for the two models’ 11 

performance over the western U.S. (west of 110°W) only at  low altitudes (<3km ASL) for both 12 

non-fire and fire flight segments.  Most of these flights departed from Boise, ID, except the 22 13 

July flight that flew from California to Idaho. As a result, they mainly flew over Idaho and its 14 

surrounding regions. The GFS tends to have slightly higher wind speed with positive MB, while 15 

WRF has a small negative wind speed bias. Most of the DC-8 flights are during the daytime, and 16 

the GFS has a higher daytime wind speed than WRF at low altitudes. The GFS and WRF have 17 

very similar temperature predictions. For the RH, the GFS predictions were slightly dryer than 18 

those of WRF, especially for non-fire events. The meteorological models do not consider 19 

wildfire heat effects, and thus may have (in part) led to slightly warm MB for the non-fire events 20 

(Table 2) and slightly cool MB for the fire events (Table 3). Because both the GFSv16 and WRF 21 

models have similar MB shifts from an average temperature overprediction (Table 2; non-fire 22 

events) to an underprediction (Table 3; wildfire events), we can estimate that the fire effects 23 

made roughly a 1–2 Kelvin temperature enhancement to the background along the DC-8 flight 24 

paths below 3 km.  This estimate assumes that the model temperature biases are generally 25 

representative of the western U.S. (west of 110°W), and are independent of the averaged flight 26 

segments that have different locations and periods in Table 2 and Table 3.  Correspondingly, the 27 

air masses are dryer in the sampled wildfire plumes, as shown by the large reduction in the RH 28 

underpredictions (i.e., negative MBs) from Table 2 to Table 3. 29 

 30 

4.3.2 Chemical Statistics During Non-Fire Events 31 

 32 

For most chemical species, the two models also have similar performance, indicating that the 33 

emissions and chemistry are major driving forces. For non-fire events, both models overpredict 34 

NOx, HNO3, toluene, EC, and ammonium (NH4
+), but underestimate PAN, benzene, C2H2, SO2, 35 

and submicron sulfate and organic aerosols (OA) (Table 2). The SO2 and submicron sulfate 36 

underprediction may be impacted by underestimated NEIC2016v1 SO2 emissions over the 37 

western U.S. Since point sources, including power plant emissions, are the SO2 sources, this 38 

comparison implies that the point sources for 2019 events have large uncertainties.  39 

  40 
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Although the models agree well with NOy observations, they disproportionately underestimate 1 

NOz as shown by the regression slopes and MBs. One of the important NOz species is PAN, and 2 

both models underestimate PAN during the non-fire events (Table 2).  PAN’s carbonyl 3 

precursors include acetaldehyde (CH3CHO) (44% of the global source), methylglyoxal (30%), 4 

acetone (7%), and a suite of other isoprene and terpene oxidation products (19%) (Fischer et al., 5 

2014). CH3CHO and acetone are also underestimated (Table 2), and help explain PAN’s 6 

underestimation. For the oxidized hydrocarbons, like aldehydes (HCHO, CH3CHO), their main 7 

atmospheric sources are the oxidation of highly reactive VOCs, including alkanes, alkenes, and 8 

aromatics, instead of direct emissions (Parrish et al., 2012). So, the underestimation of HCHO 9 

and CH3CHO are associated with the underestimation of their precursor hydrocarbons, including 10 

anthropogenic and biogenic VOCs. Our other comparison indicated that BEIS tends to 11 

underpredict biogenic emission over the U.S. West, e.g. isoprene in Table 2. In this comparison, 12 

most anthropogenic hydrocarbons are disproportionately underestimated, except toluene, 13 

implying the VOC speciation issue in the NEIC2016v1 anthropogenic emissions (Table 2). 14 

Previous work had discovered that a model overprediction in toluene was also related to the 15 

toluene speciation in the NEI emission inventory (Lu et al., 2020).  16 

 17 

Submicron ammonium (NH4
+) and the nitrate ion are also underestimated by both models during 18 

non-fire events (Table 2), suggesting there are NH3 underestimates due to either insufficient NH3 19 

emissions or exaggerated NH3 removal processes. There are, however, overpredictions in the 20 

intermediate species nitric acid (HNO3). It implies that the HNO3 accumulates in the atmosphere 21 

because the modeled NOz pathways toward the nitrate ion and organic nitrate aerosol products 22 

are reduced due to their other precursor (NH3 and VOCs) underestimation.  23 

 24 

There are underestimations in the VOC and CO concentrations, which contributes to the ozone 25 

underestimation during non-fire events (Table 2). These non-fire comparisons also highlight that 26 

both models have similar biases due to similar meteorology (Section 4.3.1), and the use of the 27 

same anthropogenic emissions (NEIC2016v1), BEIS biogenic emission and chemical 28 

models/mechanisms (i.e CMAQv5.3.1).  The differences in the two models’ bias, error, and 29 

correlation/slope are much smaller than their individual magnitudes. 30 

 31 

4.3.3 Chemical Statistics During Fire Events 32 

The WRF-CMAQ and GFS-CMAQ models significantly underestimate CO, VOC, HONO, and 33 

OA for fire events at low altitudes (< 3 km) over the western U.S. (Table 3). In conjunction with 34 

underestimated GBBEPx emissions during these wildfire events, other possible causes for the 35 

average statistical underprediction are the CMAQ model’s 12 km horizontal resolution and the 36 

flight sampling coverage. Most of the fires that are averaged in the statistics, such as the Horsefly 37 

(5.5 km2 burning area) and Snow Creek Fires (7.3 km2 burning area), are at a much finer scale 38 

than the model grid. Only the largest Williams Flats Fire, with a total burning area of 180 km2 39 

(Ye et al., 2021), had a comparable horizontal scale to the model resolution.   40 
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 1 

The DC-8 aircraft had many flight segments near wildfire sources during the fire events in Table 2 

3, and thus dilution of the emissions due to the relatively coarse model resolution may lead to 3 

underestimations in the predicted slope for most wildfire emitted pollutants, such as CO and OA 4 

(Table 3). The O3 concentrations are also underestimated; however, the O3 underpredictions are 5 

reduced from the non-fire (Table 2) to fire events (Table 3). Abundant amounts of wildfire 6 

emitted NOx can titrate ozone near the fire source region, and the models likely underestimate 7 

these titration effects due to the 12 km model resolution. Thus, the models cannot capture the 8 

strong spatial O3 variability that is observed due to both reduction near source regions and 9 

enhancement in downstream areas. Again, for this fire event comparison, both models showed 10 

similar behavior and their differences were relatively smaller compared to the overall model 11 

biases.  12 

 13 

5. Summary and Discussion  14 

The operational NOAA/NWS National Air Quality Forecasting Capability (NAQFC) recently 15 

underwent a major upgrade on July 20, 2021. The advanced NAQFC includes the recent 16 

Community Multi-scale Air Quality (CMAQ) model version 5.3.1 with CB6 (carbon bond 17 

version 6)-Aero7 (version 7 of the aerosol module) chemical mechanism, and is driven by the 18 

latest operational Finite Volume Cubed-Sphere (FV3)-Global Forecast System, version 16 19 

(GFSv16) (Campbell et al., 2022). Here we analyze the impacts of the driving meteorological 20 

models on CMAQ model performance with the new GFSv16 interpolation-based meteorology 21 

versus the commonly-used native-grid Weather Research and Forecasting (WRF) model version 22 

4.0.3 meteorology. The meteorological and chemical analysis includes both 2D ground-based 23 

and 3D aircraft measurements during the summer 2019, which encompasses the joint NOAA-24 

NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) 25 

campaign. As CMAQ has existing mass conservation via adjustments of the contravariant 26 

vertical velocity (Otte and Pleim, 2010), the NACC interpolated GFSv16 wind field can be well 27 

handled in CMAQ (i.e., GFS-CMAQ). 28 

 29 

The different NWS/NOAA operational GFS and commonly chosen WRF physics schemes 30 

employed in this study (Table 1) clearly have impacts on temperature, wind fields (both 31 

horizontal/advection and vertical/convection), PBL heights, and the corresponding CMAQ 32 

model predictions. During this study period over the U.S. West, both models showed moisture 33 

dry bias and temperature warm bias in low altitudes, which could be due to the issue mentioned 34 

by Qian et al (2020) and impacts from soil moisture deficits on surface fluxes in both models. 35 

Due to their different physics, GFS had stronger diurnal variation of PBL height, lower at night 36 

and higher during daytime over the U.S. West and Northeast. The differences in the GFS and 37 

WRF physics have a larger impact than the meteorology driver methodologies (i.e., interpolation 38 

vs. native) on the models’ meteorological and air quality predictions, even despite using FDDA 39 

to nudge WRF simulation toward the GFSv16 data. While FDDA nudging was used here in 40 
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WRF to avoid growing errors across a continuous 1-month simulation, we note that if it is turned 1 

off, the differences between GFSv16 and WRF predictions would have been even greater. This 2 

would further substantiate the dominance of using different model physics compared to using 3 

different meteorological-driver methodologies (i.e., native vs. interpolation) and their impacts on 4 

CMAQ model predictions. Overall, the results of this study further corroborate the use of the 5 

GFSv16 data and NACC interpolation-based methods (Campbell et al., 2022) for regional 6 

CMAQ model applications in the scientific community.  7 

 8 

Over CONUS, GFS-CMAQ demonstrated lower mean surface ozone (by about 3 ppb) and 9 

PM2.5 (by about 1 μg/m3) than WRF-CMAQ in August 2019 (section 3). In the western U.S., 10 

the GFS has a stronger diurnal variability in PBL height and a better performance in nighttime 11 

10-m wind speeds compared to WRF. The nighttime difference between these two models tends 12 

to be more significant than the corresponding daytime difference. Their difference is also 13 

impacted by both vertical/convective (mainly daytime) and upstream advective transport 14 

differences in GFS-CMAQ and WRF-CMAQ, which somewhat confounds the impact of 15 

different meteorological physics on chemical predictions from region to region. This transport 16 

effect is more significant on PM2.5 than that on O3, as O3 has a shorter lifetime and is more 17 

sensitive to local emissions in summer. In this study, neither GFS-CMAQ nor WRF-CMAQ 18 

show overwhelming performance advantage over the other, similar to the NMM-CMAQ and 19 

ARW-CMAQ comparison in Yu et al. (2012a, 2012b). 20 

 21 

GFS-CMAQ and WRF-CMAQ demonstrated rather similar performance for major chemical 22 

variables during both FIREX-AQ non-fire (Table 2) and fire events (Table 3). In most FIREX-23 

AQ events, both GFS-CMAQ and WRF-CMAQ showed similar biases, indicating that other 24 

factors, including emissions, model resolution and chemistry etc. could be more important for the 25 

model predictions compared to the meteorological differences. The aircraft data comparison 26 

reveals many common issues in both model systems. One critical issue is whether the flight 27 

sampling coverage is comparable to the 12 km model resolution, especially for high-gradient fire 28 

emission, e.g. the case of 06 August flight (Figure S3). The observation representation issue also 29 

exists in other places, such as near-surface meteorological comparison between AIRNow stations 30 

and METAR stations. Emission is the driving force for atmospheric composition concentrations. 31 

The comprehensive aircraft measurements help verify that the anthropogenic NEIC2016v1 32 

inventory is overall reasonable, except for SO2, NH3 and certain hydrocarbons. The wildfire 33 

emission has bigger uncertainties, including the emission intensities, specification and plume 34 

rise, shown by the both models’ results. 35 

 36 

The NACC interpolation method is advantageous as it enables using the original meteorological 37 

driver directly via interpolation, and avoids running another model such as WRF as a downscaler 38 

for regional CMAQ applications. It is also faster, and more consistent with the original 39 

meteorological driver. These aspects can simultaneously benefit real-time forecasting and 40 
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retrospective air quality applications in the scientific community. NACC can also adapt to 1 

quickly use any regional domain globally, and may also use other global meteorological data 2 

including reanalysis products.  This helps mitigate the confounding factors of using different 3 

model configurations across the myriad of WRF physics options, while alleviating the difficulty 4 

in understanding their impacts on air quality predictions. The operational GFSv16 and associated 5 

reanalysis products are well vetted and evaluated across different global agencies and 6 

laboratories, and thus are well suited for regional CMAQ applications using NACC. In fact, there 7 

is an ongoing project at NOAA to migrate both the GFSv16 data and NACC software to the 8 

Amazon Web Services (AWS) Cloud platform to provide a streamlined product for the user to 9 

generate the model-ready meteorological data for any regional CMAQ application globally.  10 

 11 

Finally, we note that the current operational GFSv16 has enough meteorological variables to 12 

drive CMAQ with other supplied data (fractional landuse, LAI etc), and its C768 grid has 13 

horizontal resolution from 10.21 km to 14.44 km, which is close to the NAQFC’s 12 km 14 

horizontal resolution. However, some commonly available global meteorological data, such as 15 

NCEP or ECMWF reanalysis data, may not have all meteorological variables needed by CMAQ, 16 

and have relatively coarse model resolutions. In this case, the WRF downscaling may become 17 

the only available method to drive a finer scale CMAQ model application. WRF data generated 18 

by different physics may be good for a finer scale CMAQ simulation; however NACC 19 

developments are underway to also process/interpolate higher resolution FV3-based Limited 20 

Area Models (LAMs) for direct application to CMAQ. All the physics schemes were developed 21 

according to certain regions and meteorological conditions. We again stress, however, that the 22 

downscaled WRF physics may significantly alter the original meteorological fields even with the 23 

FDDA nudging. As shown in this study, GFS and WRF had mixed performance for driving 24 

CMAQ. 25 

 26 

Code and Data Availability.  27 

The FIREX-AQ field campaign data used in this study is in https://www-air.larc.nasa.gov/cgi-28 

bin/ArcView/firexaq (last access, 16 May 2022). The NACC code used in this study is publicly 29 

available at https://doi.org/10.5281/zenodo.5507489 and via GitHub at https://github.com/noaa-30 

oar-arl/NACC.git (last access: 5 April 2022). The modified CMAQv5.3.1 for GFS-CMAQ is 31 

available at https://doi.org/10.5281/zenodo.5507511 and via GitHub at https://github.com/noaa-32 

oar-arl/NAQFC (last access: 5 April 2022).  33 
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Table 1.  The two meteorological datasets used in this study 1 

Model Settings FV3-GFSv16/NACC WRF-ARW/MCIP 

Domain 

Global C768L127 (~ 13 km horizontal 

resolution in 6 cubic spherical tiles , 

127 vertical layers up to 80km), 

interpolated to the 12km CONUS 

domain with 35-layers up to about 

14km (60hPa) 

12km CONUS 35 vertical layers 

up to 100hPa 

 

Dynamic core 
Finite Volume 3, non-hydrostatic 

(Putman and Lin, 2007) 

WRF-ARW dynamic in hybrid 

vertical coordinate (Skamarock et 

al., 2021) 

Initial condition 

FV3-GFSv16 analysis (GDAS) using 

the local ensemble Kalman filter 

(LETKF) (Ott et al., 2004) with 4-

dimensional incremental analysis 

update (4D-IAU) 

FV3-GFSv16 analysis (GDAS) 

Lateral Boundary 

Condition 
N/A FV3-GFSv16 analysis (GDAS) 

Cloud Microphysics 

GFDL six-category cloud microphysics 

scheme (Lin et al., 1983; Lord et al., 

1984; Krueger et al., 1995; Chen and 

Lin, 2011; Chen and Lin, 2013) 

Morrison 2-moment scheme 

(Morrison et al., 2009) 

PBL Physics Scheme 

Scale-aware (sa) turbulent kinetic 

energy (TKE) -based moist eddy-

diffusivity mass-flux (EDMF) (sa-

TKE-EDMF) (Han and 

Bretherton,2019) 

Yonsei University Scheme (Hong 

et al., 2006) 

Shallow/Deep 

Cumulus 

Parameterization 

SAS Scheme (Han et al. 2011; 2017) 
Kain Fritsch multiscale (Kain, 

2004) 

Shortwave and 

Longwave Radiation 

RRTMG (Mlawer et al. 1997; Clough 

et al. 2005; Iacono et al. 2008) 
RRTMG (Iacono et al. 2008). 

Land Surface Model 

Noah Land Surface Model (Chen and 

Dudhia 2001; Ek et al. 2003;Tewari et 

al. 2004) 

Noah (Tewari et al., 2004) 

Surface Layer 

Monin-Obukhov (Monin-Obukhov 

1954; Grell et al. 1994; Jimenez et al. 

2012) 

Revised MM5 Scheme (Jimenez 

et al., 2012) 

Other treatment  

FDDA nudging is enabled for 

temperature and specific humidity 

whole domain, and for wind 

components (U, V) outside the 

PBL. 

 2 
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Variables 

Obs 

Mean 

GFS-CMAQ WRF-CMAQ 

MB NMB RMSE R Slope MB NMB RMSE R Slope 

Temperature (K) 295 0.979 0.332 2.04 0.988 1.13 1.16 0.393 2.28 0.989 1.17 

RH (%) 35.6 -7.3 -20.5 11.8 0.781 0.717 -6.05 -17 12.6 0.677 0.598 

Wind Speed 

(m/s) 4.81 0.758 15.8 3.25 0.432 0.473 -1.11 -23.1 2.4 0.666 0.524 

O3 (ppbv) 57.9 -10.7 -18.5 15 0.651 0.34 -10.4 -17.9 14.1 0.717 0.413 

CO (ppbv) 134 -37.6 -28 53.2 0.654 0.573 -37.1 -27.7 52.9 0.652 0.572 

NOx (ppbv) 1.11 0.507 45.6 2.9 0.704 1.15 0.345 31.1 2.86 0.695 1.12 

NOy (ppbv) 2.56 -0.0418 -1.63 3.07 0.743 0.892 0.055 2.15 3.14 0.724 0.86 

NOz (ppbv) 1.63 -0.465 -28.6 1.17 0.782 0.553 -0.125 -7.66 1.08 0.788 0.721 

HONO (ppbv) 0.00432 0.012 279 0.0438 0.379 0.444 0.0134 311 0.0487 0.358 0.48 

HNO3 (ppbv) 0.291 0.154 53.1 0.421 0.683 1.34 0.337 116 0.65 0.708 1.89 

PAN (ppbv) 0.399 -0.251 -63 0.416 0.675 0.221 -0.222 -55.6 0.386 0.681 0.284 

NH3 (ppbv) 3.55 -0.801 -22.6 5.26 0.0481 0.038 -1.58 -44.5 4.37 0.304 0.155 

C2H4 (ppbv) 0.121 0.0582 48.1 0.189 0.702 0.869 0.0385 31.9 0.187 0.682 0.836 

C2H2 (ppbv) 0.146 -0.0734 -50.3 0.137 0.784 0.496 -0.0696 -47.7 0.137 0.771 0.494 

SO2 (ppbv) 0.342 -0.235 -68.8 0.567 0.0238 0.00835 -0.221 -64.5 0.568 -1.26×10-3 -0.00047 

Acetone (ppbv) 2.74 -2.28 -83.1 2.45 0.686 0.192 -2.2 -80.4 2.38 0.668 0.199 

HCHO (ppbv) 2.1 -0.972 -46.4 1.26 0.559 0.447 -0.909 -43.4 1.25 0.513 0.442 

CH3CHO (ppbv) 0.736 -0.326 -44.2 0.538 0.647 0.386 -0.349 -47.4 0.554 0.643 0.38 

Benzene (ppbv) 0.0449 -0.0193 -43 0.057 0.398 0.385 -0.0191 -42.6 0.0564 0.397 0.375 

Toluene (ppbv) 0.039 0.0409 105 0.153 0.759 1.74 0.0352 90.1 0.14 0.762 1.63 

Isoprene (ppbv) 0.073 0.0361 49.4 0.174 0.6 0.838 0.00661 9.06 0.145 0.648 0.797 

EC 

(μg/std m3) 0.108 0.191 177 0.572 0.518 2.09 0.228 211 0.609 0.455 1.88 

OA  

(μg/std m3) 10.9 -7.15 -65.7 9.72 0.565 0.263 -6.48 -59.5 9.45 0.495 0.243 

Sulfate  

(μg/std m3) 1.31 -0.781 -59.7 1.11 0.0856 0.0188 -0.773 -59 1.11 0.0322 0.00677 

NH4
+  

(μg/std m3) 0.745 -0.615 -82.5 0.805 0.416 0.103 -0.596 -79.9 0.778 0.509 0.145 

Nitrate  

(μg/std m3) 1.22 -1.08 -88.1 1.49 0.562 0.229 -1.04 -85.3 1.45 0.57 0.279 

AOE (/Mm) 54.5 -29.3 -53.8 47 0.593 0.227 -27.4 -50.2 45.9 0.588 0.227 

 

Table 2. Statistics of the two models compared to the observation for DC-8 flight segments with non-fire events below 

3km (ASL) over west of -100°W. All aerosols are in submicron. The normalized mean bias (NMB) is in unit %. 
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Variables 

Obs 

Mean 

GFS-CMAQ WRF-CMAQ 

MB NMB RMSE R Slope MB NMB RMSE R Slope 

Temperature (K) 287 -0.389 -0.135 0.702 0.995 1.01 -0.688 -0.24 0.863 0.997 1.04 

RH (%) 27.8 -0.761 -2.74 7.84 0.712 0.553 4.3 15.5 11.1 0.556 0.534 

Wind Speed 

(m/s) 5.42 0.766 14.1 2.16 0.612 0.616 -0.811 -15 2.12 0.604 0.556 

O3 (ppbv) 55.7 -6.61 -11.9 11.8 0.587 0.262 -7.01 -12.6 11.5 0.653 0.346 

CO (ppbv) 486 -377 -77.6 873 0.596 0.0347 -383 -78.8 883 0.442 0.0242 

NOx (ppbv) 2.63 0.06 2.28 6.41 0.465 0.231 -0.619 -23.5 7.02 0.31 0.153 

NOy (ppbv) 7.32 -4.19 -57.3 13.3 0.507 0.123 -4.66 -63.7 14.2 0.31 0.073 

NOz (ppbv) 5.7 -4.8 -84.3 10.2 -0.189 -0.0106 -4.68 -82 10.2 -0.204 -0.0121 

HONO (ppbv) 0.283 -0.274 -96.8 1.18 0.355 0.0043 -0.274 -96.8 1.18 0.291 0.00457 

HNO3 (ppbv) 0.148 0.148 99.7 0.256 0.532 1.07 0.179 121 0.28 0.402 0.768 

PAN (ppbv) 0.971 -0.793 -81.7 1.63 0.27 0.0195 -0.765 -78.8 1.61 0.279 0.026 

NH3 (ppbv) 17.7 -12.3 -69.3 28.3 0.379 0.0654 -13.7 -77.4 29.6 0.232 0.0386 

C2H4 (ppbv) 4.5 -4.34 -96.3 10.2 0.421 0.00498 -4.36 -96.8 10.2 0.14 0.0018 

C2H2 (ppbv) 1.04 -1.01 -96.9 2.08 0.534 0.00866 -1.01 -97 2.09 0.363 0.00623 

SO2 (ppbv) 0.699 -0.322 -46.1 1.38 0.589 0.198 -0.392 -56.1 1.5 0.429 0.132 

Acetone (ppbv) 3.54 -3.2 -90.3 4.56 0.13 0.00862 -3.18 -89.7 4.55 0.135 0.0112 

HCHO (ppbv) 8.17 -7.13 -87.3 17.8 0.232 0.0062 -7.19 -88 17.8 0.119 0.00303 

CH3CHO (ppbv) 3.65 -3.18 -87.4 9.13 0.186 0.00547 -3.21 -88 9.2 -0.027 -0.00097 

Benzene (ppbv) 0.683 -0.67 -98.1 1.84 0.54 0.00432 -0.672 -98.3 1.84 0.367 0.00275 

Toluene (ppbv) 0.451 -0.436 -96.6 1.36 0.402 0.00491 -0.438 -97 1.36 0.195 0.00245 

Isoprene (ppbv) 0.095 -7.9×10-3 -8.29 0.234 0.123 0.0579 -0.033 -34.7 0.242 -0.014 -0.00541 

EC 

(μg/std m3) 1.89 -0.53 -28 3.28 0.612 0.295 -0.787 -41.6 3.7 0.448 0.195 

OA  

(μg/std m3) 156 -146 -93.4 420 0.612 0.0174 -147 -94.2 423 0.472 0.0122 

Sulfate  

(μg/std m3) 0.791 -0.116 -14.7 0.676 0.415 0.184 -0.214 -27.1 0.728 0.322 0.13 

NH4
+  

(μg/std m3) 1 -0.591 -59.1 0.931 0.767 0.351 -0.615 -61.5 0.956 0.729 0.359 

Nitrate  

(μg/std m3) 1.7 -0.56 -32.9 1.47 0.805 0.613 -0.634 -37.2 1.59 0.774 0.599 

AOE (/Mm) 391 -350 -89.3 994 0.688 0.027 -357 -91.1 1010. 0.532 0.0152 

 

Table 3, same as Table 2 except for the wildfire affected flight segments. 
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Figure 1. GFS and WRF surface meteorological biases for METAR (METeorological Aerodrome Report) 

stations averaged over August, 2019   

  

a) GFS mean 2m temperature bias (K), 08/2019 b) WRF mean 2m temperature bias (K), 08/2019 

d) WRF mean 2m specific humidity bias (g/kg), 08/2019 c) GFS mean 2m specific humidity bias (g/kg), 08/2019 

e) GFS mean 10m wind speed bias (m/s), 08/2019 f) WRF mean 10m wind speed bias (m/s), 08/2019 
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Figure 2. Monthly mean PBL height difference (GFS-WRF) for daytime (a) and nighttime (b), August, 2019. 

  

a) 

b) 
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Figure 3. The WRF and GFS time-series comparison over AIRNow stations over the U.S. West and Northeast 

for 2m temperature (a, b), 10m wind speed (c, d), and PBL height (e,f). 

  

a) b) 

c) d) 

e) f) 
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Figure 4. Same as Figure 3 but for ozone (a, b) and PM2.5 (c, d). 

  

a) b) 

c) d) 
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Figure 5. Monthly mean surface ozone predictions by GFS-CMAQ (left plots) and WRF-CMAQ (right plots) 

for daytime (top plots) and nighttime (bottom plots) compared to the corresponding AIRNow observations, 

August, 2019  

  

a) b) 

c) d) 
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Figure 6, same as figure 5 but for surface PM2.5 

  

a) b) 

c) d) 
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Figure 7. Modeled meteorological variables compared with observations for the DC-8 flight on 22 July, 2019 (b 

to f). The plot a shows the flight path colored in altitudes above sea level with UTC time in red text. Base map 

credits: © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database 

License (ODbL) v1.0.  

a) 

b) 

c) 
d) 

e) 
f) 
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Figure 8, Curtain plots of the vertical velocity (W) predicted by GFS-CMAQ (a) and WRF-CMAQ (b) along the 

DC-8 flight on 22 July, 2019. The colored dots showed the DC-8 measured vertical velocities. The solid lines 

showed the predicted PBL heights of these two models. 

  

a)    GFS-CMAQ predicted vertical velocity along the DC-8 

flight path, 22, July, 2019 

b)    WRF-CMAQ predicted vertical velocity along the DC-8 

flight path, 22, July, 2019 
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Figure 9. Model predicted chemical concentrations compared with observations along with the DC-8 flight on 

22 July, 2019 

  

a) b) 

c) d) 

e) f) 
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Figure 10. The DC-8 flight path (a), and model-observation comparisons for O3 (b), CO (c), NO2 (d), submicron 

organic aerosol (OA) (e) and aerosol optical extinction coefficient (AOE) at wavelength of 550nm (f) on 06 

August, 2019. Base map credits: © OpenStreetMap contributors 2022. Distributed under the Open Data 

Commons Open Database License (ODbL) v1.0. 

  

a) b) 

c) d) 

e) f) 
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Figure 11, The Differential Absorption High Spectral Resolution Lidar (DIAL-HSRL) retrieved aerosol 

backscatter coefficient (ABC) at 532nm wavelength in unit /km/steradian (a) and cloud screened one (b); 

curtain plots of the AOE (b, c) and relative humidity (RH) (d, e) predicted by GFS-CMAQ (left) and WRF-

CMAQ (right) along the DC-8 flight on 06 August, 2019. The colored dots showed the corresponding measured 

values. The solid lines showed the predicted PBL heights of these two models. 

  

a)  DIAL-HSRL aerosol backscatter coefficient (ABC) at 

532nm wavelength along the DC-8 flight path, 6 Aug., 2019 

c)  GFS-CMAQ predicted AOE@550nm (/Mm) along 

the DC-8 flight path, 6 Aug., 2019 
d)  WRF-CMAQ predicted AOE@550nm (/Mm) along 

the DC-8 flight path, 6 Aug., 2019 

e)  GFS-CMAQ predicted RH (%) along the DC-8 

flight path, 6 Aug., 2019 
f)  WRF-CMAQ predicted RH (%) along the DC-8 

flight path, 6 Aug., 2019 

b)  DIAL-HSRL cloud screened ABC at 532nm wavelength 

along the DC-8 flight path, 6 Aug., 2019 
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